Bifurcations and Fractal Zeta Functions of Orbits University of Zagreb

Energy forms on random and stretched fractals

Uta Freiberg Technische Universität Chemnitz

12. Mai 2023

Motivation: Analysis on fractals

Plan of the lecture

1. (Self-similar) fractals

2. Analysis on (self-similar) fractals

The Dirichlet form approach (Kusuoka, Kigami)

Model case: Sierpinski gasket

- 3. Spectral asymptotics
- 4. The *V*-variable model
- 5. Spectral asymptotics in the V-variable model

6. Stretched fractals (= quantum graphs with vanishing edge lengths)

1. Introduction: Self similar fractals

1.1. Definition and Examples

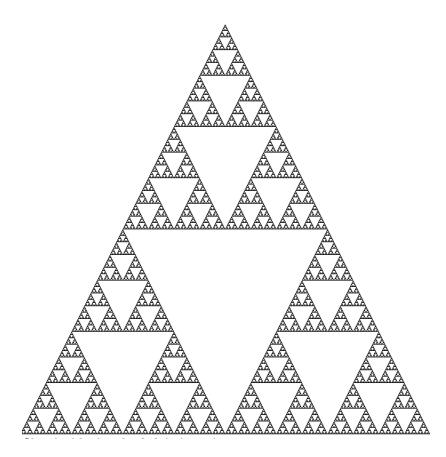
 $K \subseteq \mathbb{R}^n$ is called self similar, if

$$K = \bigcup_{i=1}^{M} S_i(K)$$

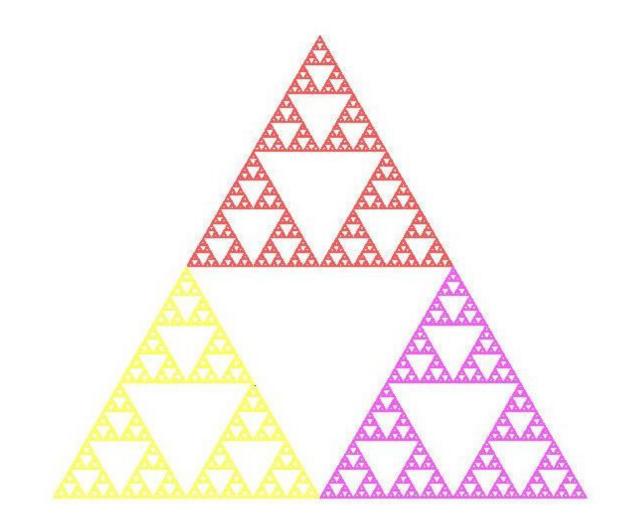
where $M \geq 2$ and $S_i : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ similitudes.

Exp. Sierpinski gasket:

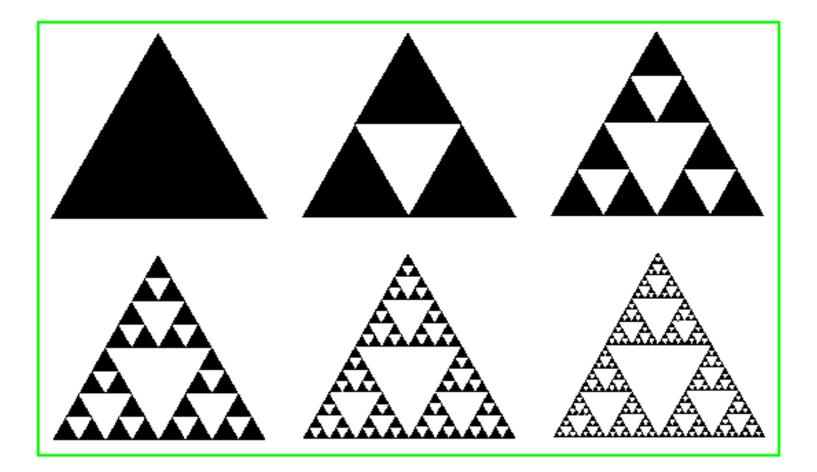
A, B, C vertices of a unilateral triangel Family $\mathfrak{S} = \{S_1, S_2, S_3\}$ of contractions on \mathbb{R}^2 , where $S_1(x) = \frac{1}{2}(x-A) + A, S_2(x) = \frac{1}{2}(x-B) + B, S_3(x) = \frac{1}{2}(x-C) + C$ There is a unique (non empty and compact) set K, the so-called Sierpinski gasket:



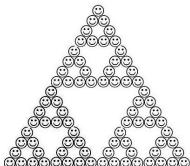
Again:

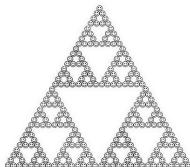


It can be obtained by iteration of the three mappings:



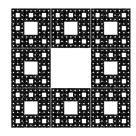
Hereby, you can start with any set:





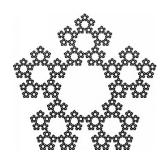
Further examples for self–similarity:

	_	
_		
HI HH		

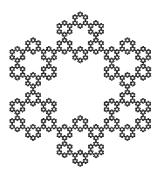


a) Cantor set

b) Sierpinski carpet



c) Pentagasket



d) Snowflake

2. Dirichlet form and Laplacian on the Sierpinski gasket

2.1. Interludium: Analysis on fractals

aim: Definition of the Laplacian Δ (wave/heat/Poisson/Schrödingier equation)

Problem: Fractals are too ,,rough"

 \Rightarrow no tangent space

 \Rightarrow new notion of derivative necessary

Classical approaches:

- limit of difference operators (Dirichlet form theory) Kusuoka, Kigami, Lapidus, Mosco, Hambly, Teplyaev, Strichartz,...
- Construction of the "natural" Brownian motion as the limit of a sequence of appropriate renormalized random walks Kusuoka, Barlow, Bass, Perkins, Lindstrøm; Sabot, Metz,…
- Martin boundary theory on the Code space Denker, Sato, Koch,...
- (fractal dimensional) traces of function spaces (for exp. Sobolev spaces) or via Riesz potentials
 Triebel, Haroske, Schmeißer,...; Zähle

New approaches:

- Generalized Laplacians (Δ-Beltrami, Hodge-Δ, Dirac-Δ)
 M. Hinz, Teplyaev, Rogers,...
- Non-commutative Geometry: Interpretation of the fractal in terms of spectral triple
 Bellissard, Falconer, Samuel, Lapidus; Cipriani, Guido, Isola, ...
- Theory of resistance forms

Kigami, Kajino, Alonso-Ruiz, F.,...

• Approximation by quantum graphs

Teplyaev, Kelleher, Alonso-Ruiz, F. ...; Mugnolo, Lenz, Keller, Post, Kuchment, ...

2.2. Kusuoka' s approach

Aim: Define Δ_K Laplacian on K

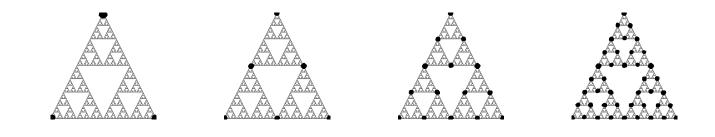
Idea:

- Define "fractal analogue" $\mathcal{E}_{K}[u]$ of $\mathcal{E}[u] = \int_{\Omega} |\nabla u|^{2} dx$
- $\mathcal{E}_K(u,v) := \frac{1}{2} \left(\mathcal{E}_K[u+v] \mathcal{E}_K[u] \mathcal{E}_K[v] \right)$ bilinear form
- Δ_K via Gauß–Green–formula:

$$\int_{K} (\Delta_{K} u) v d\mu = \text{boundary terms } -\mathcal{E}_{K}(u,v)$$
(cf.
$$\int_{\Omega} \Delta u \cdot v = \text{boundary terms } -\int_{\Omega} \nabla u \cdot \nabla v$$
)

via: Dirichlet forms on Graphs Approximation of *K*:

 $V_0 := \{A, B, C\}, \qquad V_n := \bigcup_{i=1}^3 S_i(V_{n-1}), n \ge 1$



 V_0 , V_1 , V_2 and V_3

 $(V_n)\uparrow, \quad V_*:=\bigcup_{n\geq 0}V_n=\sup_{n\geq 0}V_n, \quad K=\overline{V_*}$

Let $u: V_* \longrightarrow \mathbb{R}$

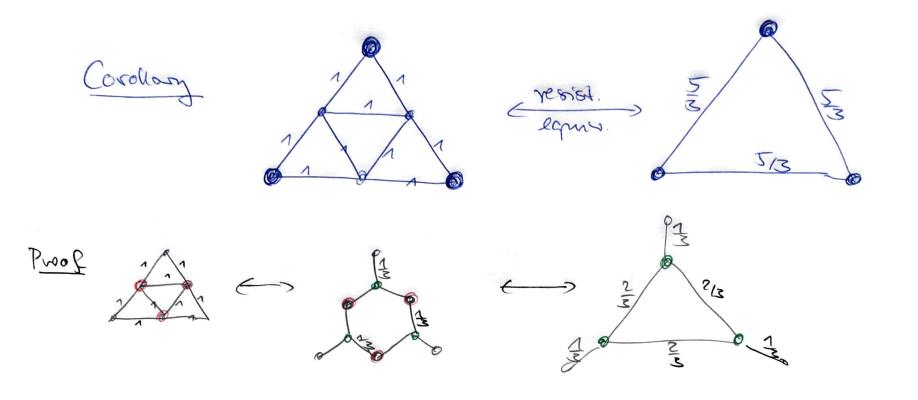
Ansatz:
$$E_n[u] := \varrho^n \sum_{p \in V_n} \sum_{|p-q|=2^{-n}} (u(p) - u(q))^2, \qquad n \ge 0.$$

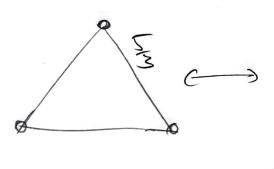
e scaling number (defined and obtained by ,, Gaussian principle")

It turns out that $\rho_F = 5/3$.

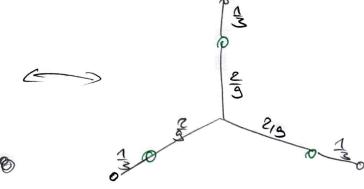
Finding the right conductance renormalitation
(D) Way: conductance commutation (
$$C_{xy} = r_{xy}^{-1}$$
)
resistances ($R_1 + R_2$
 $R = R_1 + R_2$
Claim ($\Delta - Y - mle$)
Proof l.h.s. $R_{xy} = \frac{R}{3} + \frac{R}{3} = \frac{2R}{3}$
 $R = R_1 + \frac{1}{2R} = \frac{2}{2R}$
Remark $\exists \Delta - Y - mle$ for unbolanced case,
much more complicated!

D

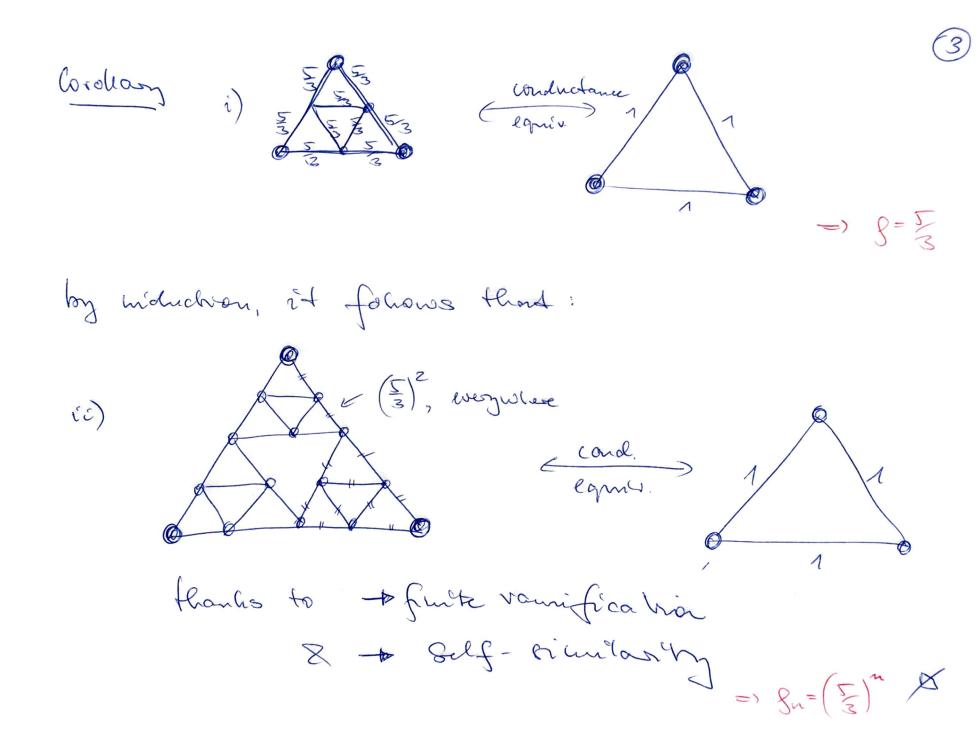


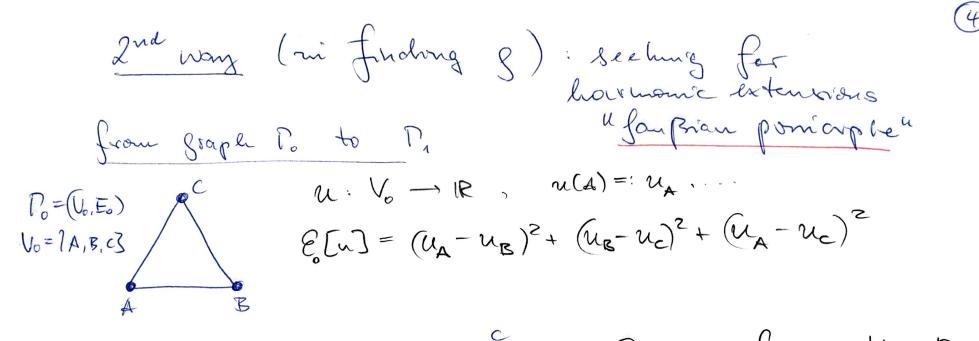


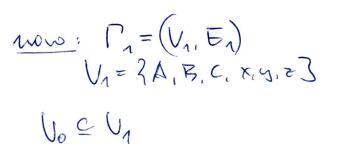
55 50 500

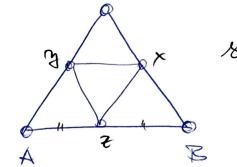


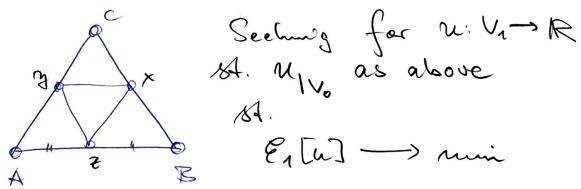
2











Where $E_1 [n] = (u_A - u(z))^2 + (u(z) - u_B)^2 + \dots$ (9 brumanols) This argumi E, In) is the harmonic extension of M/Vo!

Calculation knows:
$$W'(k) = \frac{W_k + 2W_k + 2W_k + 2W_k}{5}$$

and $E_1 trid, unit = 315 E_0 trid must "connection "factor
again: bulf smi & fruste vanistication $m(5G)^m$
 $1^{54} \times 2^{ud}$ way give the same result !
Rason: [Voltage vis a harmonic fruction]
 $f Doyle & Buck: "Panolom walks + Electoric methods"
Why is ten's the right way to third about of?
Exp [0,1] must interval
 $f = 2^{-2}$ and $f = 2^{-2}$
 $M = 2^{-2}$ and $f = 2^{-2}$$$

Self similarity and finite ramification $\Rightarrow (\mathcal{E}_n[u])_{n>0} \nearrow$

Limit form $\mathcal{E}_{K}[u] := \lim_{n \to \infty} \mathcal{E}_{n}[u]$

on $\mathcal{D}_* := \{ u : V_* \longrightarrow \mathbb{R} : \mathcal{E}_K[u] < \infty \}$

Extension from $u \in \mathcal{D}_*$ to $u \in \mathcal{C}(K)$

 $\mathcal{D} := \overline{\mathcal{D}_*}$ completion wrt. $\left(||.||^2_{L_2(K,\mu)} + \mathcal{E}_K[.] \right)^{1/2}$

 $(\mathcal{E}, \mathcal{D})$ is Dirichlet form on $L_2(K, \mu) \Rightarrow \Delta_K$ Laplace operator

 $(\mathcal{E}, \mathcal{D})$ ist regular and local \Rightarrow ex. associated diffusion process $(X_t)_{t>0}$ (Brownian motion on K)

3. Spectral asymptotics in the deterministic model

3.1. Spectral dimension – Definition Consider $\Delta_n = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$ Laplace operator of \mathbb{R}^n .

H. Weyl, 1915: The eigenvalue counting function

 $N_n(x) := \# \{ \lambda_k \le x \quad : \quad -\Delta_n u = \lambda_k u \text{ for some } u \neq 0 \},$

(Counting according multiplicities) is well–defined, and for any $n \in \mathbb{N}$ it holds that

$$N_n(x) = (2\pi)^{-n} c_n \operatorname{vol}^n(\Omega) x^{n/2} + o(x^{n/2}), \quad \text{as} \quad x \to \infty,$$

Hence, $d_S(\Omega) = n$.

3.2. Spectral asymptotics in the self similar deterministic model

Spectral dimension d_S

$$N(x) \sim x^{d_S/2}, \quad x \to \infty.$$

Kigami, Lapidus 1993 μ = Hausdorff measure on $K \Rightarrow \exists C_1, C_2, x_0$ such that $C_1 x^{d_S/2} \leq N_{D/N}(x) \leq C_2 x^{d_S/2}, \quad x \geq x_0,$

where $\frac{d_S}{2} = \frac{\ln M}{\ln(\varrho M)}$.

Hereby, M = number of copies, $\varrho =$ energy scaling factor of \mathcal{E} . We set $T := \varrho M$ (Einstein-Relation!). Hence, $\frac{d_S}{2} = \frac{\ln M}{\ln T}$. Further remaks:

• Berry's conjecture, 80's: There is a Weyl type asymptotics also valid for fractals *K*, i.e.

$$N_K(x) = c_d \mathcal{H}^d(K) x^{d/2} + o(x^{d/2}), \quad \text{as} \quad x \to \infty$$

with $d := d_H(K)$, c_d a constant independent of K . Is wrong!
i.g. $d_H \neq d_S$

• In general we do not have that $\mathcal{E}[u] \preceq \mathcal{H}^d$, i.e. we do not have that

 $\mathcal{E}[u] = \int |\nabla u|^2 d\mathcal{H}^d$

• Second derivatives are easier to define than first derivatives!

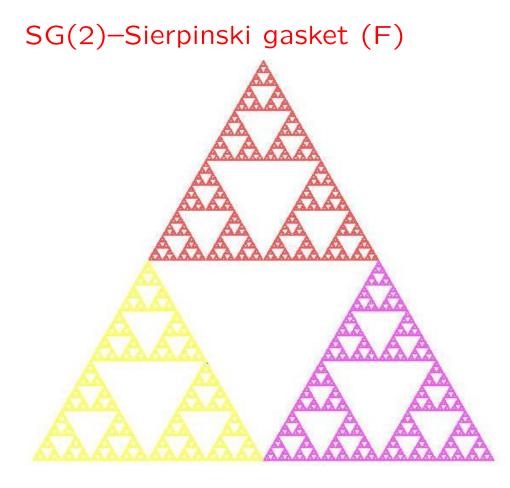
4. The *V*-variable model

The assumption of strict self similarity can be too restricting (in order to model real world fractal sets).

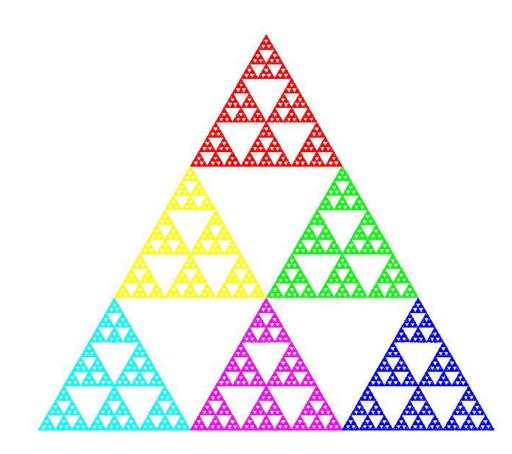
Way out: "Weakening" of the assumption, for exp. by

random mixing of different IFS's

4.1. The model case: SG(2) vs. SG(3)

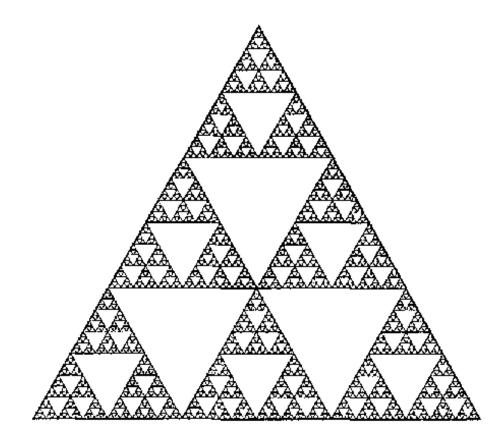


measure scaling factor μ $\mu_F = 1/3$ length scaling factor r $r_F = 1/2$ energy/resistance scaling factor $\varrho \ \varrho_F = 5/3$ time scaling factor $T = M \varrho$ $T_F = 5$ SG(3)-modified Sierpinski gasket (G)



measure scaling factor μ $\mu_G = 1/6$ length scaling factor r $r_G = 1/3$ energy/resistance scaling factor $\varrho \ \varrho_G = 15/7$ time scaling factor $T = M \varrho$ $T_G = 90/7$

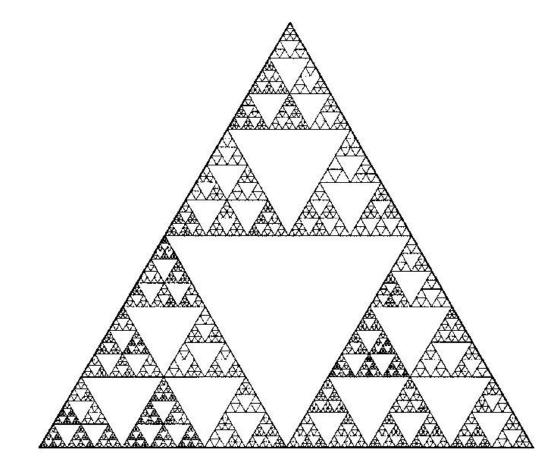
Random mixing I "homogenous random" (V = 1)



Hambly ('97 BM, '99 heat kernels, '00 Δ) (Kifer '95, Stenflo '01)

Coding: random sequence

Random mixing II , random recursive", standard random " ($V = \infty$)



Hambly '92 (BM), Barlow Hambly '97 (Δ) (Falconer '86, Mauldin Williams '86, Graf '87, Hutchinson Rüschendorf '98, '00)

Coding: random labelled tree

now: "Interpolation" between both the methods I and II \rightsquigarrow "*V*-variable fractal" $V \in \mathbb{N} \cup \{\infty\}$

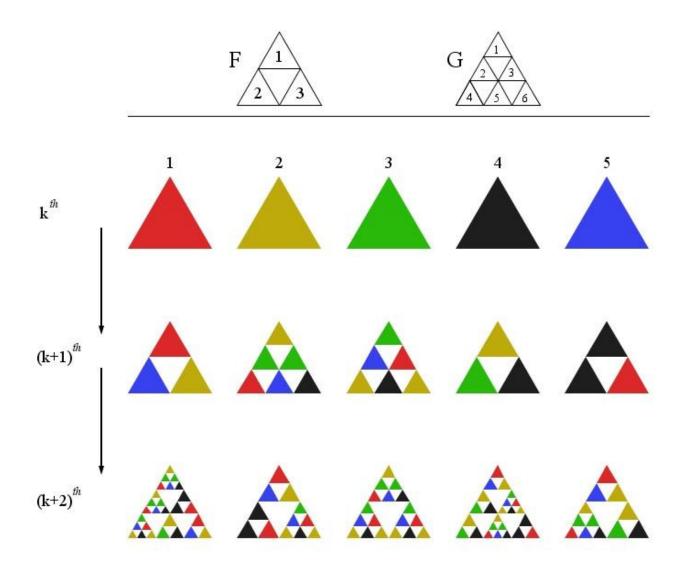
Construction of the V members of the $(k+1)^{st}$ generation from the V members of the k^{th} generation:

1° Choose \mathcal{F} or \mathcal{G} according to probabilities (p_F, p_G) .

2° Choose 3 (or 6, resp.) "parents" from generation k for the i^{th} child of generation k + 1.

Run this loop V times.

We construct V-tuples of sets instead of single sets!



4.2. Applications

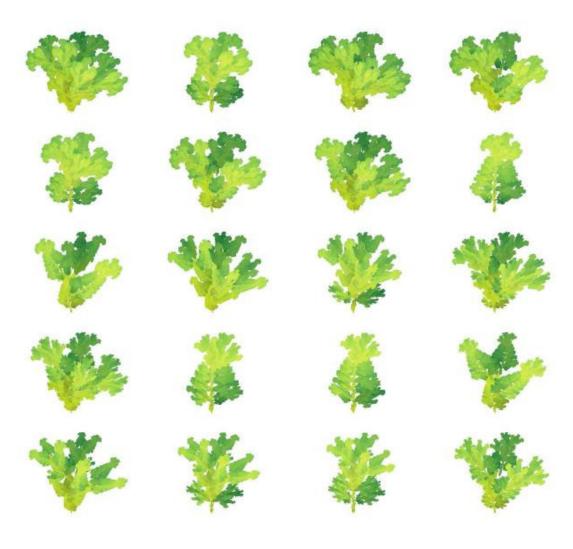
z.B. Modeling of species

• for exp: choose parents wrt. their geographical origin

•,, breed" fractals



salad and fern (attractors of IFS's)



fern-lettuce-hybrids

5. Spectral asymptotics in the random case

5.1. Construction of the form

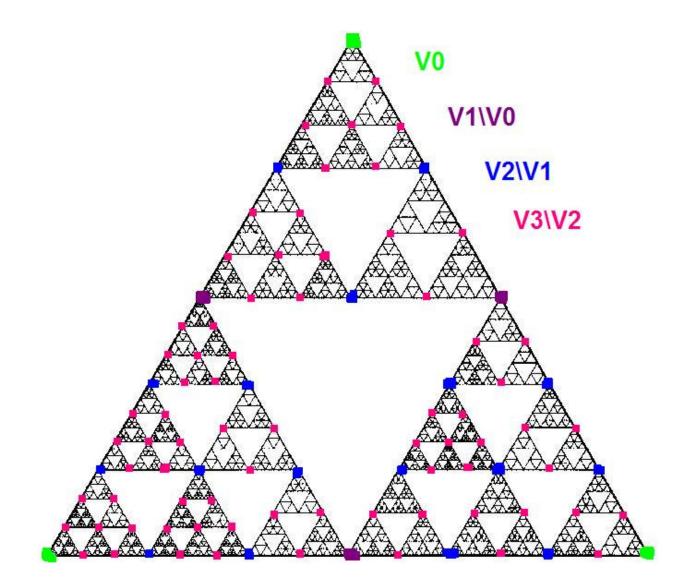
is done hierarchically and ω -wise

(Ω is the set of all *V*-variable trees)

Define $V_0, V_1, V_2, \dots \omega$ -wise

Values of a function given on $V_0 \rightsquigarrow$ harmonic extension to $V_1 \setminus V_0$ (i.e. one calculates the function in 3 (or 7) new points)

harmonic extension to $V_2 \setminus V_1$ on EACH of the 3 (or 6) sub triangles of V_1 according to an \mathcal{F} - (or \mathcal{G} , reps.)-rule



Proceeding like this one obtains a sequence

$$\mathcal{E}_{n}^{(\omega)}[f] = \sum_{\overline{\imath} \in \omega_{n}} R(\overline{\imath}) \mathcal{E}_{0}[f \circ \psi_{\overline{\imath}}]$$

where

$$R(\overline{\imath}) = \prod_{j=1}^{|\overline{\imath}|} \varrho_j, \qquad \varrho_j \in \{\varrho_F = 5/3, \varrho_G = 15/7\}$$

From the construction we obtain:

$$\mathcal{E}_{n}^{(\omega)}[f_{|V_{n}}] = \inf\{\mathcal{E}_{n+1}^{(\omega)}[g] : g_{|V_{n}} = f_{|V_{n}}\}$$

The limit form $(\mathcal{E}^{(\omega)}, \mathcal{D}(\mathcal{E}^{(\omega)}))$ is a Dirichlet form on $L_2(K(\omega), \mu(\omega))$,

where $K(\omega)$ is the realization of the random set, and $\mu(\omega)$ is a random self similar measure on $K(\omega)$ obtained as the Monge–Kantorovich–limit obtained by applying the Markov–operators $\mathcal{M}_{\mathcal{F}}$ or $\mathcal{M}_{\mathcal{G}}$, reps. according to the tree ω .

5.2. Results

• Homogenous case (V = 1): Sequences of F's and G's; Strong law of large numbers, Law of iterated logarithm, martingale theory.

- Recursive case ($V = \infty$): branching theory
- V-variable case: we now need products and sums of certain parameters according to the V-variable setting.

IDEA: Products of random $V \times V$ -matrices coding up the information of the construction process

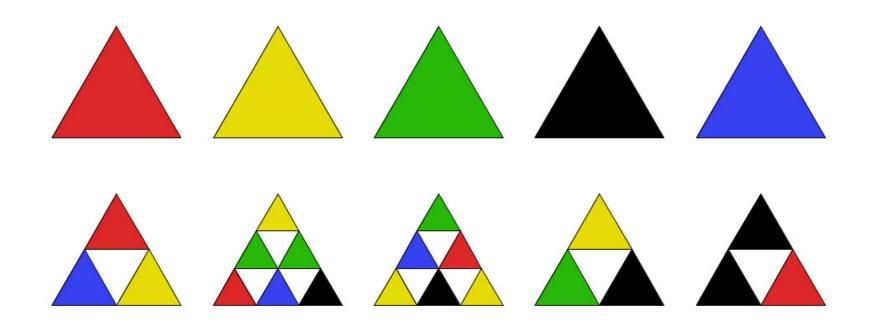
How to get now d_S ?

We now need products and sums of ρ_F and ρ_G according to the V-variable setting.

Define $T_F := \rho_F M_F$ and $T_G := \rho_G M_G$, i.e. $T_F = 5$ and $T_G = 90/7$. (Note: These are the mean crossing times through the generating graphs.)

The transformation from level k to level k + 1 of V-tuples of triangles we code up with the help of an $V \times V$ -matrix $M^{(k)}(\alpha)$ as follows: (hereby $\alpha > 0$ is a free parameter)

Remember:



$$M^{(k)}(\alpha) = \begin{pmatrix} \left(\frac{1}{T_F}\right)^{\alpha} & \left(\frac{1}{T_F}\right)^{\alpha} & 0 & 0 & \left(\frac{1}{T_F}\right)^{\alpha} \\ \left(\frac{1}{T_G}\right)^{\alpha} & \left(\frac{1}{T_G}\right)^{\alpha} & 2\left(\frac{1}{T_G}\right)^{\alpha} & \left(\frac{1}{T_G}\right)^{\alpha} & \left(\frac{1}{T_G}\right)^{\alpha} \\ \left(\frac{1}{T_G}\right)^{\alpha} & 2\left(\frac{1}{T_G}\right)^{\alpha} & \left(\frac{1}{T_G}\right)^{\alpha} & \left(\frac{1}{T_G}\right)^{\alpha} & \left(\frac{1}{T_G}\right)^{\alpha} \\ 0 & \left(\frac{1}{T_F}\right)^{\alpha} & \left(\frac{1}{T_F}\right)^{\alpha} & \left(\frac{1}{T_F}\right)^{\alpha} & 0 \\ \left(\frac{1}{T_F}\right)^{\alpha} & 0 & 0 & 2\left(\frac{1}{T_F}\right)^{\alpha} & 0 \end{pmatrix}$$

pressure function

$$\gamma_V(\alpha) := \lim_{k \to \infty} \frac{1}{k} \log \left(\frac{1}{V} \left\| M^{(k)}(\alpha) \dots M^{(1)}(\alpha) \right\| \right),$$

where the norm ||A|| is the sum of all the entries in the matrix A.

Theorem (F+Hambly+Hutchinson, 2010)

 $\gamma_V(\alpha)$ is a well defined function of α and independent of the realization of the experiment. (Furstenberg/Kesten 1960).

Moreover it holds that $\gamma_V(.)$ is strictly monotone decreasing and $\exists ! d : \gamma_V(d) = 0.$

For this zero d of $\gamma_V(.)$ it holds a.s. that $N(x) \sim x^d$.

More precisely, it holds that

$$N(x)x^{-\alpha} \longrightarrow 0$$
 $\mathbf{P}-a.s.$ for $\alpha > d.$

and

$$N(x)x^{-\alpha} \longrightarrow \infty$$
 $\mathbf{P} - a.s.$ for $\alpha < d.$

[FHaHu, 2011] Refinement of the result on the spectral asymptotics:

• For any self similar measure it holds that

$$\lim_{x \to \infty} \frac{\log N(x)}{\log x} = \frac{d_s}{2} \qquad \mathbf{P} - a.s.$$

• In the "flat-measure-case" it holds that

$$c^{-1}x^{d_s/2}/\phi(x) \le N(x) \le cx^{d_s/2}\phi(x), \quad x \to \infty, \mathbf{P} - a.s,$$

where $\phi(x) := \exp(-c\sqrt{\log x \log \log \log x}).$

 \bullet In the "flat–measure–case" it holds for $V=\infty$ that

$$\lim_{x \to \infty} \frac{N(x)}{x^{d_s/2}} = C, \quad \mathbf{P} - a.s.$$

[FHaHu, 2011] heat-kernel-estimates (on-diagonal)

In the "flat–measure–case" exist constants such that P-a.s. for μ -almost every $x \in K$ it holds that

$$c_1 \phi(1/t)^{-c_2} t^{-d_s/2} \le p_t(x, x) \le c_3 \phi(1/t)^{c_4} t^{-d_s/2}, \quad 0 < t < 1,$$

where $\phi(x) = \exp(-c\sqrt{\log x \log \log \log x}).$

Remark: The measure is not "doubling"!! Existence of heat kernels: [Croydon, 2007]

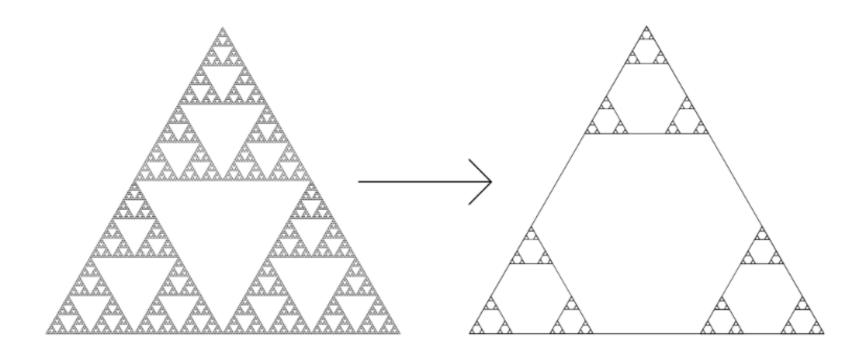
- Well known results for V = 1 are contained now as special cases.
- For $V \ge 2$: no explicite expression for d_S (simulation)

Reference:

U. Freiberg, B.M. Hambly and J.E. Hutchinson
Spectral asymptotics for V-variable Sierpinski gaskets.
Ann. Inst. H. Poincare Probab. Stat. 53, 2162–2213, 2017

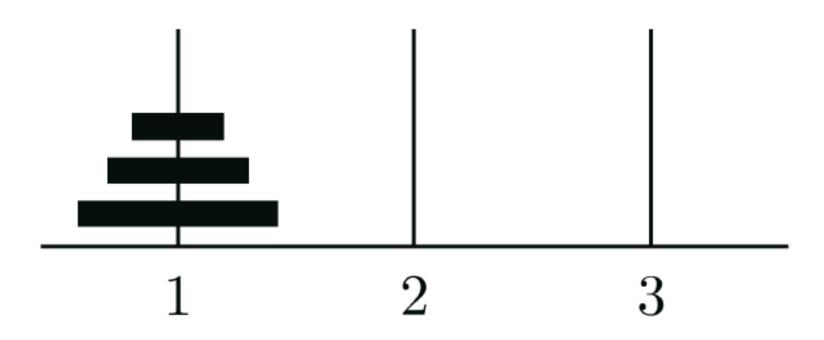
(or, Ben's homepage)

6. Stretched fractals

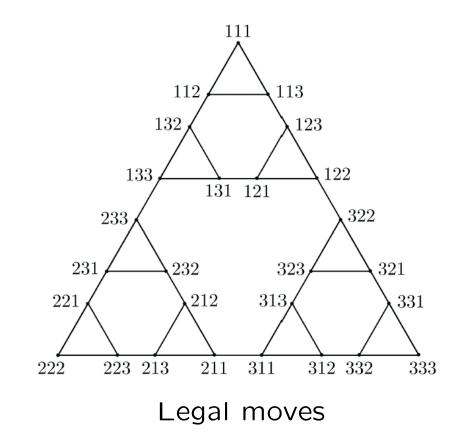


Sierpinski gasket and stretched Sierpinski gasket

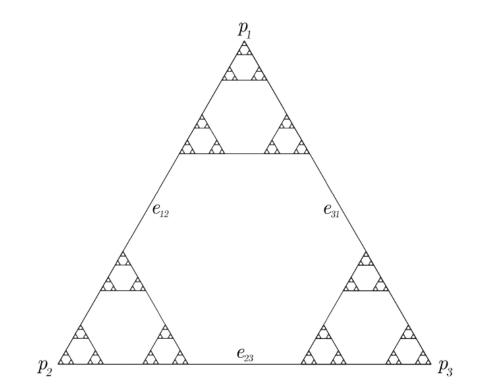
Stretched Sierpinski gasket is often called Hanoi graph



Tower of Hanoi game



see: Hinz, Klavzar, Petr: The tower of Hanoi – myths and maths, 2nd ed. 2018



SSG is an inhomogenous self similar fractal

• Let p_1, p_2, p_3 be the vertex points of an equilateral triangle with side length 1 and for $\alpha \in (0, 1)$ define

$$G_i(x) := \frac{1-\alpha}{2}(x-p_i) + p_i, \quad i = 1, 2, 3$$

- e_{ij} := line segment between $G_i(p_j)$ and $G_j(p_i)$.
- Then, K_{α} is the unique compact set with

٠

$$K_{\alpha} = G_1(K_{\alpha}) \cup G_2(K_{\alpha}) \cup G_3(K_{\alpha}) \cup e_{12} \cup e_{23} \cup e_{31}.$$

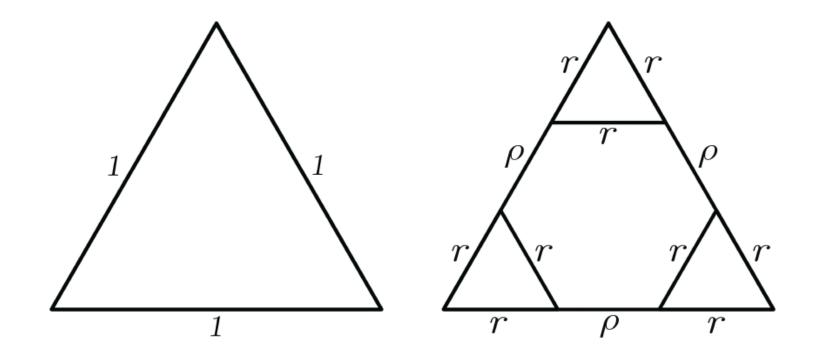
• Unique (in the Hausdorff space) solution of

$$\Sigma_{\alpha} = G_1(\Sigma_{\alpha}) \cup G_2(\Sigma_{\alpha}) \cup G_3(\Sigma_{\alpha})$$

we call fractal part, the rest $K_{\alpha} \setminus \Sigma_{\alpha}$ line part.

Observation: α ↓ 0 : K_α → K Sierpinski gasket
 in Hausdorff distance, in Hausdorff dimension
 (P. Alonso-Ruiz, URF: Hanoi attractors and the Sierpinski gasket, 2012)

• Question: Does the analysis converge? In which sense? (P. Alonso-Ruiz, URF: Weyl asymptotics for Hanoi attractors, 2017)



• $\rho + 5/3r = 1$, (ρ, r) matching pair

• more general: $(\rho_n, r_n)_{n \ge 1}$ matching sequence, see: P. Alonso-Ruiz, URF and J. Kigami: Completely symmetric resistance forms on the stretched Sierpinski gasket., J. Fractal Geom. 5 (2018), no. 3, 227–277

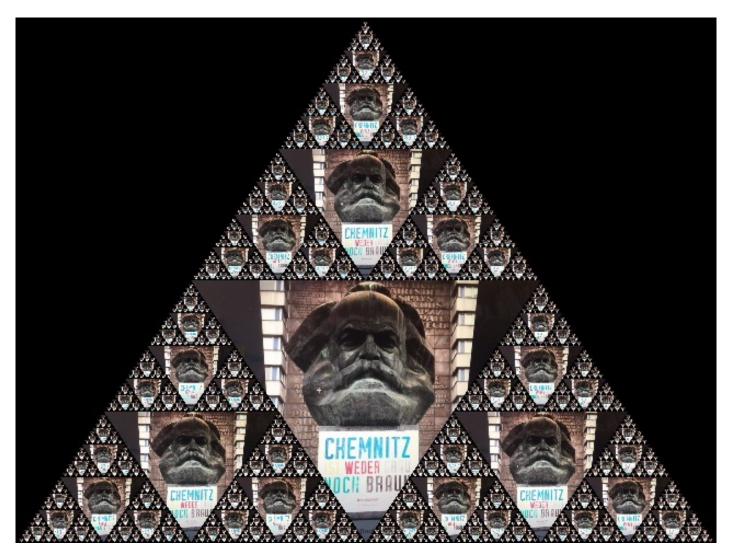
• Weyl asymptotics: 3 preprints, on arXiv:

Elias Hauser: Spectral asymptotics on the Hanoi attractor, 2017 Elias Hauser: Oscillations on the Stretched Sierpinski Gasket, 2018.

Elias Hauser: Spectral Asymptotics for Stretched Fractals, 2018.

• many open problems, in particular on the associated stochastic process...

Publim transition probabactions Hanoi lsc las, las, las = length's Vi = li "Desistances" Cij = Vi-1 "conductances" transition prob Matural : $P_{SA} = \frac{C_{SA}}{C_{SA} + C_{SB} + C_{SC}}$



Thank you for your attention!