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Motivation: Analysis on fractals

Plan of the lecture

1. (Self–similar) fractals

2. Analysis on (self–similar) fractals

The Dirichlet form approach (Kusuoka, Kigami)

Model case: Sierpinski gasket

3. Spectral asymptotics

4. The V –variable model

5. Spectral asymptotics in the V –variable model

6. Stretched fractals (= quantum graphs with vanishing edge

lengths)



1. Introduction: Self similar fractals

1.1. Definition and Examples
K ⊆ Rn is called self similar, if

K =
M⋃

i=1

Si(K)

where M ≥ 2 and Si : Rn −→ Rn similitudes.

Exp. Sierpinski gasket:

A,B,C vertices of a unilateral triangel

Family S = {S1, S2, S3} of contractions on R2, where

S1(x) = 1
2(x−A) +A,S2(x) = 1

2(x−B) +B,S3(x) = 1
2(x−C) +C



There is a unique (non empty and compact) set K, the so–called

Sierpinski gasket:



Again:



It can be obtained by iteration of the three mappings:



Hereby, you can start with any set:



Further examples for self–similarity:

a) Cantor set b) Sierpinski carpet

c) Pentagasket d) Snowflake



2. Dirichlet form and Laplacian on the Sierpinski
gasket

2.1. Interludium: Analysis on fractals

aim: Definition of the Laplacian ∆

(wave/heat/Poisson/Schrödingier equation)

Problem: Fractals are too
”

rough“

⇒ no tangent space

⇒ new notion of derivative necessary



Classical approaches:

• limit of difference operators (Dirichlet form theory)

Kusuoka, Kigami, Lapidus, Mosco, Hambly, Teplyaev, Strichartz,...

• Construction of the
”

natural“ Brownian motion as the limit

of a sequence of appropriate renormalized random walks

Kusuoka, Barlow, Bass, Perkins, Lindstrøm; Sabot, Metz,...

• Martin boundary theory on the Code space

Denker, Sato, Koch,...

• (fractal dimensional) traces of function spaces (for exp. So-

bolev spaces) or via Riesz potentials

Triebel, Haroske, Schmeißer,...; Zähle



New approaches:

• Generalized Laplacians (∆–Beltrami, Hodge–∆, Dirac–∆)

M. Hinz, Teplyaev, Rogers,...

• Non-commutative Geometry: Interpretation of the fractal in

terms of spectral triple

Bellissard, Falconer, Samuel, Lapidus; Cipriani, Guido, Isola, ...

• Theory of resistance forms

Kigami, Kajino, Alonso–Ruiz, F. ,...

• Approximation by quantum graphs

Teplyaev, Kelleher, Alonso–Ruiz, F. ...; Mugnolo, Lenz, Keller, Post,

Kuchment, ...



2.2. Kusuoka’ s approach
Aim: Define ∆K Laplacian on K

Idea:

• Define
”

fractal analogue“ EK[u] of E[u] =
∫

Ω

|∇u|2dx

• EK(u, v) := 1
2 (EK[u+ v]− EK[u]− EK[v]) bilinear form

• ∆K via Gauß–Green–formula:
∫

K

(∆Ku) vdµ = boundary terms − EK(u, v)

(cf.
∫

Ω
∆u · v = boundary terms − ∫

Ω
∇u · ∇v)



via: Dirichlet forms on Graphs

Approximation of K:

V0 := {A,B,C}, Vn :=
3⋃

i=1

Si(Vn−1), n ≥ 1

V0, V1, V2 and V3

(Vn) ↑, V∗ :=
⋃

n≥0

Vn = sup
n≥0

Vn, K = V∗



Let u : V∗ −→ R

Ansatz: En[u] := %n
∑
p∈Vn

∑
|p−q|=2−n

(u(p)− u(q))2, n ≥ 0.

% scaling number (defined and obtained by
”

Gaussian principle“)

It turns out that %F = 5/3.
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Self similarity and finite ramification ⇒ (En[u])n≥0 ↗

Limit form EK[u] := limn→∞ En[u]

on D∗ := {u : V∗ −→ R : EK[u] <∞}

Extension from u ∈ D∗ to u ∈ C(K)

D := D∗ completion wrt.
(
||.||2

L2(K,µ) + EK[.]
)1/2

(E,D) is Dirichlet form on L2(K,µ) ⇒ ∆K Laplace operator

(E,D) ist regular and local ⇒ ex. associated diffusion process

(Xt)t≥0 (Brownian motion on K)



3. Spectral asymptotics in the deterministic mo-
del

3.1. Spectral dimension – Definition
Consider ∆n =

n∑
i=1

∂2

∂x2
i

Laplace operator of Rn.

H. Weyl, 1915: The eigenvalue counting function

Nn(x) := # {λk ≤ x : −∆nu = λku for some u 6= 0} ,
(Counting according multiplicities) is well–defined, and for any

n ∈ N it holds that

Nn(x) = (2π)−ncnvoln(Ω)xn/2 + o(xn/2), as x→∞,
Hence, dS(Ω) = n.



3.2. Spectral asymptotics in the self similar de-
terministic model
Spectral dimension dS

N(x) ∼ xdS/2, x→∞.

Kigami, Lapidus 1993

µ = Hausdorff measure on K ⇒ ∃ C1, C2, x0 such that

C1x
dS/2 ≤ ND/N(x) ≤ C2x

dS/2, x ≥ x0,

where dS
2 = lnM

ln(%M).

Hereby, M = number of copies, % =energy scaling factor of E.

We set T := %M (Einstein–Relation!). Hence, dS
2 = lnM

lnT .



Further remaks:

• Berry’s conjecture, 80’s: There is a Weyl type asymptotics

also valid for fractals K, i.e.

NK(x) = cdHd(K)xd/2 + o(xd/2), as x→∞
with d := dH(K), cd a constant independent of K. Is wrong!

i.g. dH 6= dS

• In general we do not have that E[u] � Hd , i.e. we do not have

that

E[u] =
∫ |∇u|2dHd

• Second derivatives are easier to define than first derivatives!



4. The V –variable model

The assumption of strict self similarity can be too restricting (in

order to model real world fractal sets).

Way out:
”

Weakening“ of the assumption, for exp. by

random mixing of different IFS’s



4.1. The model case: SG(2) vs. SG(3)

SG(2)–Sierpinski gasket (F)

measure scaling factor µ

µF = 1/3

length scaling factor r

rF = 1/2

energy/resistance scaling

factor % %F = 5/3

time scaling factor T = M%

TF = 5



SG(3)–modified Sierpinski gasket (G)

measure scaling factor µ

µG = 1/6

length scaling factor r

rG = 1/3

energy/resistance scaling

factor % %G = 15/7

time scaling factor T = M%

TG = 90/7



Random mixing I

”
homogenous random“ (V = 1)

Hambly (’97 BM, ’99 heat

kernels, ’00 ∆)

(Kifer ’95, Stenflo ’01)

Coding: random sequence



Random mixing II

”
random recursive“,

”
standard random “ (V =∞)

Hambly ’92 (BM), Bar-

low Hambly ’97 (∆)

(Falconer ’86, Mauldin

Williams ’86, Graf ’87,

Hutchinson Rüschendorf

’98, ’00)

Coding: random labelled

tree



now:
”

Interpolation“ between both the methods I and II

 
”
V –variable fractal“ V ∈ N ∪ {∞}

Construction of the V members of the (k+ 1)st generation from

the V members of the kth generation:

1◦ Choose F or G according to probabilities (pF , pG).

2◦ Choose 3 (or 6, resp.)
”

parents“ from generation k for the ith

child of generation k + 1.

Run this loop V times.

We construct V –tuples of sets instead of single sets!





4.2. Applications

z.B. Modeling of species

• for exp: choose parents wrt. their geographical origin

•
”

breed“ fractals



salad and fern (attractors of IFS’s)



fern–lettuce–hybrids

V = 2



5. Spectral asymptotics in the random case

5.1. Construction of the form
is done hierarchically and ω–wise

(Ω is the set of all V –variable trees)

Define V0, V1, V2, ... ω–wise

Values of a function given on V0  harmonic extension to V1 \V0

(i.e. one calculates the function in 3 (or 7) new points)

harmonic extension to V2 \ V1 on EACH of the 3 (or 6) sub

triangles of V1 according to an F– (or G, reps.)–rule





Proceeding like this one obtains a sequence

E(ω)
n [f ] =

∑

ı∈ωn
R(ı)E0[f ◦ ψı]

where

R(ı) =
|ı|∏

j=1

%j, %j ∈ {%F = 5/3, %G = 15/7}



From the construction we obtain:

E(ω)
n [f|Vn] = inf{E(ω)

n+1[g] : g|Vn = f|Vn}

The limit form (E(ω),D(E(ω))) is a Dirichlet form on L2(K(ω), µ(ω)),

where K(ω) is the realization of the random set, and µ(ω) is a

random self similar measure on K(ω) obtained as the Monge–

Kantorovich–limit obtained by applying the Markov–operators

MF or MG, reps. according to the tree ω.



5.2. Results
• Homogenous case (V = 1): Sequences of F’s and G’s; Strong

law of large numbers, Law of iterated logarithm, martingale theo-

ry.

• Recursive case (V =∞): branching theory

• V –variable case: we now need products and sums of certain

parameters according to the V –variable setting.

IDEA: Products of random V × V –matrices coding up the infor-

mation of the construction process



How to get now dS?

We now need products and sums of %F and %G according to the

V –variable setting.

Define TF := %FMF and TG := %GMG, i.e. TF = 5 and TG = 90/7.

(Note: These are the mean crossing times through the genera-

ting graphs.)

The transformation from level k to level k + 1 of V –tuples of

triangles we code up with the help of an V × V –matrix M(k)(α)

as follows: (hereby α > 0 is a free parameter)



Remember:



M(k)(α) =




(
1
TF

)α (
1
TF

)α
0 0

(
1
TF

)α

(
1
TG

)α (
1
TG

)α
2
(

1
TG

)α (
1
TG

)α (
1
TG

)α

(
1
TG

)α
2
(

1
TG

)α (
1
TG

)α (
1
TG

)α (
1
TG

)α

0
(

1
TF

)α (
1
TF

)α (
1
TF

)α
0

(
1
TF

)α
0 0 2

(
1
TF

)α
0




pressure function

γV (α) := lim
k→∞

1

k
log

(
1

V

∥∥∥M(k)(α)...M(1)(α)
∥∥∥
)
,

where the norm ‖A‖ is the sum of all the entries in the matrix

A.



Theorem (F+Hambly+Hutchinson, 2010)

γV (α) is a well defined function of α and independent of the
realization of the experiment.(Furstenberg/Kesten 1960).

Moreover it holds that γV (.) is strictly monotone decreasing and
∃! d : γV (d) = 0.

For this zero d of γV (.) it holds a.s. that N(x) ∼ xd.

More precisely, it holds that

N(x)x−α −→ 0 P− a.s. for α > d.

and

N(x)x−α −→∞ P− a.s. for α < d.



[FHaHu, 2011] Refinement of the result on the spectral asym-

ptotics:

• For any self similar measure it holds that

lim
x→∞

logN(x)

logx
=
ds

2
P− a.s.

• In the
”

flat–measure–case“ it holds that

c−1xds/2/φ(x) ≤ N(x) ≤ cxds/2φ(x), x→∞,P− a.s,
where φ(x) := exp(−c√logx log log logx).

• In the
”

flat–measure–case“ it holds for V =∞ that

lim
x→∞

N(x)

xds/2
= C, P− a.s.



[FHaHu, 2011] heat-kernel-estimates (on–diagonal)

In the
”

flat–measure–case“ exist constants such that P-a.s. for

µ-almost every x ∈ K it holds that

c1φ(1/t)−c2t−ds/2 ≤ pt(x, x) ≤ c3φ(1/t)c4t−ds/2, 0 < t < 1,

where φ(x) = exp(−c√logx log log logx).

Remark: The measure is not
”

doubling“!! Existence of heat ker-

nels: [Croydon, 2007]



• Well known results for V = 1 are contained now as special

cases.

• For V ≥ 2: no explicite expression for dS (simulation)



Reference:

U. Freiberg, B.M. Hambly and J.E. Hutchinson

Spectral asymptotics for V –variable Sierpinski gaskets.

Ann. Inst. H. Poincare Probab. Stat. 53, 2162–2213, 2017

(or, Ben’s homepage)



6. Stretched fractals

Sierpinski gasket and stretched Sierpinski gasket



Stretched Sierpinski gasket is often called Hanoi graph

Tower of Hanoi game



Legal moves

see: Hinz, Klavzar, Petr: The tower of Hanoi – myths and maths, 2nd ed.
2018



SSG is an inhomogenous self similar fractal

• Let p1, p2, p3 be the vertex points of an equilateral triangle with
side length 1 and for α ∈ (0,1) define

Gi(x) :=
1− α

2
(x− pi) + pi, i = 1,2,3



.

• eij := line segment between Gi(pj) and Gj(pi).

• Then, Kα is the unique compact set with

Kα = G1(Kα) ∪G2(Kα) ∪G3(Kα) ∪ e12 ∪ e23 ∪ e31.

• Unique (in the Hausdorff space) solution of

Σα = G1(Σα) ∪G2(Σα) ∪G3(Σα)

we call fractal part, the rest Kα \Σα line part.



• Observation: α ↓ 0 : Kα → K Sierpinski gasket

in Hausdorff distance, in Hausdorff dimension

(P. Alonso–Ruiz, URF: Hanoi attractors and the Sierpinski gasket, 2012)

• Question: Does the analysis converge? In which sense?

(P. Alonso–Ruiz, URF: Weyl asymptotics for Hanoi attractors, 2017)



• ρ+ 5/3r = 1, (ρ, r) matching pair

• more general: (ρn, rn)n≥1 matching sequence, see: P. Alonso–Ruiz,

URF and J. Kigami: Completely symmetric resistance forms on the stretched

Sierpinski gasket., J. Fractal Geom. 5 (2018), no. 3, 227–277



• Weyl asymptotics: 3 preprints, on arXiv:

Elias Hauser: Spectral asymptotics on the Hanoi attractor, 2017

Elias Hauser: Oscillations on the Stretched Sierpinski Gasket,

2018.

Elias Hauser: Spectral Asymptotics for Stretched Fractals, 2018.

• many open problems, in particular on the associated stochastic

process...
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Thank you for your attention!


